

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Des évolutions en projection thermique depuis une vingtaine d'années

16^{ème} Journée du réseau plasmas froids du 3 au 6 octobre 2022

MarieP PLANCHE, Geoffrey DARUT, Hanlin LIAO

Laboratoire Interdisciplinaire Carnot de Bourgogne - Site UTBM ICB UMR 6303 CNRS / Univ. Bourgogne Franche Comté (UBFC)

La projection plasma - Généralités

• Impact sur un substrat où elles s'étalent sous forme de lamelles

Substrat

L'empilement conduit à la formation d'un dépôt
Différents procédés existent selon le type de poudres, la thermique, la cinétique ou l'environnement

Principe de la projection thermique - Généralités

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

- durée d'écrasement : 1 μs
- durée de solidification : 2 à 5 μs (~10⁶ K.s⁻¹)
- durée avant l'impact d'une particule au même endroit : 1 ms

précurseur micrométrique • fusion congruente • T_{vap.} = T_{fusion} + 200

dépôt à structure micrométrique

- matrice
- défauts d'empilement (pores / délaminations)
- fissures (relaxation des contraintes)

Paramètres opératoires ou "pilotables« Paramètres qui influencent la microstructure

Caractéristiques des sources

Caractéristiques des procédés

(r)évolutions dans le domaine de la projection thermique depuis 1980

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

>1^{ère} (r)évolution: fin 1970 (et

depuis)

 systèmes automatisés de projection avec débitmètres massiques et

robots multi-axes

- 2^{ème} (r)évolution: début 1990 (et depuis)
 - systèmes de diagnostic en ligne

- 3^{ème} (r)évolution: milieu 1990 (et depuis)
 - modélisation des procédés
 - modèles CFD transitoires 2D et 3D
- 4^{ème} (r)évolution: depuis le début 2000 (et depuis)
 - amélioration de la performance des dépôts par le développement de nouveaux procédés
 - procédés robustes
 - forte puissance de torche

4^{ème} (r)évolution: depuis le début 2000 (et depuis)... les recherches développées au laboratoire ICB PMDM

- Les améliorations des propriétés des revêtements
 - Projection de Suspension (SPS)- YSZ
- La projection de nouveaux matériaux
 - Projection sous très basse pression VLPPS- TiN
 - Projection à froid (Cold Spray) Mg
- Les améliorations sur les procédés
 - Le développement autour de l'intelligence artificielle

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Améliorer les propriétés des dépôts en innovant sur les procédés La projection de suspension (SPS) de YSZ

Modification des propriétés d'un dépôt projeté thermiquement

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

- 3 principaux moyens d'action
 - » Composition chimique
 - » Procédé de projection

Flaboheslopertouiquerale

• Dureté 7

ZrO₂

• Ténacité 🗡

Liet WD H

- o Module élastique 🎍 👘
- Conductivité thermique 7

Coefficient d'expansion

Revêtements d'aluminec.

R. Ahmed, N. H. Faisal, A. M. Paradowska, et M. E. Fitzpatrick, « Residual Strain and Fracture Response of Al2O3 Coatings Deposited via APS and 4, p HVDE Fracture Response of Al2O3 Coatings Deposited via APS and 4, p 938-942, nov. 2010;

ine Intendisciplinging

Une solution réalisable pour augmenter les performances des revêtements

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Réduire la taille des poudres

YSZ #204F (Saint-Gobain, d_{50} = 25 μ m)

CY5Z-NA (Saint-Gobain, $d_{50} = 0.36 \mu m$)

 $\frac{d_{25}}{d_{0,36}} = 69$ $\frac{S_{25}}{S_{0,36}} = 4823$

 $\frac{V_{25}}{V_{0,36}} = 334898$

Inconvénients

Solution: remplacer le gaz par un liquide porteur

Mécanismes physiques en voie liquide

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

P. Fauchais, R. Etchart-Salas, V. Rat, J. F. Coudert, N. Caron, et K. Wittmann-Ténèze, J. Therm. Spray Technol., vol. 17, nº 1, p. 31-59, févr. 2008. J. Fazilleau, C. Delbos, V. Rat, J. F. Coudert, P. Fauchais, et B. Pateyron, Plasma Chem. Plasma Process., vol. 26, nº 4, p. 371-391, avr. 2006. H. Kaßner, R. Vaßen, et D. Stöver, Surf. Coat. Technol., vol. 202, nº 18, p. 4355-4361, juin 2008.

Systèmes d'injection

UNIVERSITÉ DE TRAUNALOGIE DE BELFORT VONTRÉLIMB Injecteur capillaire (jet continu)

- 🙂 Simple
- © Injection localisée
 - Couplage entre paramètres plasma, débit et vitesse suspension
 - Ø Débit de suspension faible

LERMPS

Atomiseur bi-fluide (nuage de gouttelettes)

- Débit de suspension plus élevé (jusqu'à ~ x 4)
- © Fenêtre opératoire plus large
 - S Complexe

Schéma du système SPS que nous avons utilisé

Relation entre paramètres et porosité des revêtements

Paramètres fixes du procédé		Valeurs	
Plasma		Ar: 50 NL/min	
		H ₂ : 10 NL/min	
		Intensité de courant : 600A	
		Puissance: 41 kW	
Injectio		Paramètres variables	Gamme
suspens	Drocódó	Distance de projection	50~70 (mm)
Injector	Flocede	Pas de projection	3~12 (mm)
injected		Charge massique	10~25 (wt.%)
	Suspension	Phase liquide	Ethanol et eau
Vitesse	-	Dispersant	0 ~2.5 (wt.% de solide)
robot		Matériau	Al et Acier
Refroid	Calculation	Rugosité de surface	0.04~3.51 (μm)
	Substrat	Température de préchauffage	25~300 (°C)
		Épaisseur	5~20 (mm)

Influence de la distance de projection sur la porosité

Influence de la charge massique de la suspension sur la porosité

Influence du matériau substrat sur la porosité

Porosité par analyse d'images : 25,9 \pm 1,8 %

		Conductivité Thermique	Capacité thermique spécifique	
		(W·m⁻¹·K⁻¹)	(J⋅Kg ⁻¹ ⋅K ⁻¹)	
	Alu (Al1050)	227	897	
	Acier (304L)	12.1	502	
L	ERMPS			

Conclusion

	Paramètres variables	Gamme	Porosité (%) (par analyse d'images)
Drocódó	Distance de projection	40~70 (mm)	23~40
Procede	Pas de projection	3~12 (mm)	29~34
	Charge massique	10~25 (wt.%)	29~33
Suspension	Phase liquide	Ethanol et eau	29~30
	Dispersant	0 ~2.5 (wt.% de solide)	29~36
	Matériau	Al et Acier	25~31
	Rugosité de surface	0.04~3.51 (μm)	23~31
Substrat	Température de préchauffage	25~300 (°C)	23~24
	Épaisseur	5~20 (mm)	25~29

Conclusion : mise au point d'un modèle prédictif

UN	Puissance du plasma (kW)	Charge massique (wt.%)	Taille de poudre (μm)	Distance de projection (mm)	Pas de projection (mm)	Rugosité du substrat (µm)	
	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	
	41	10~25	0.36	40~70	6	0,04~3.51	

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Innover sur les procédés pour la projection de nouveaux matériaux La projection sous très basse pression de nitrures

Les nitrures, principaux procédés de mise en forme

Comment élaborer par projection thermique des dépôts renfermant des nitrures ?

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Sans fusion des nitrures Synthèse in situ des nitrures

Dépôts cermets

— 50 μm

Dépôt Al-TiN

« SHROUD »
(« confinement »)

S. Matthews, Shrouded plasma spray of Ni-20Cr coatings utilizing internal shroud film cooling, Surface and coatings Technology, Vol. 249, 2014

- liquide/gaz et durée faible
- □ %N < 100%
- oxydation
- colmatage
 - stæchiométrie dépôt

La projection plasma sous très basse pression (VLPPS)

La projection plasma réactive sous très basse pression (R-VLPPS)

Paramètres d'expérience

Poudre Ti 🛛 💻 Paramètres de projection					
Paramètres	Valeur constante				
Torche de plasma	F4-VB				
Pression d'enceinte (Pa)	150				
Intensité du courant (A)	650				
Débit de gaz Ar (NL/min)	45				
Débit de gaz H ₂ (NL/min)	12				
Débit de gaz porteur Ar (NL/min)	2,5				
Température du substrat (°C)	700-800°C				

Elaboration de couches nitrurées par nitruration en vol

Elaboration de couches nitrurées par nitruration en vol

Massif	Dureté massif (HVN _{25g.f.})	Dépôt	Dureté moyenne (HVN _{25g.f.})	Ecart-type (HVN _{25g.f.})
TiN	2500	Ti-TiN	1003	312
AIN	1400	AI-AIN moyen	341 ne calculée sur s	164

- Dépôts hétérogènes en composition
- Mécanismes de nitruration à renforcer
- Mise en place d'une injection secondaire d'azote

Mise en place d'une injection secondaire

Cas des dépôts Ti-TiN Effet de l'anneau sur la teneur en azote

Cas des dépôts Ti-TiN – Effet de l'anneau sur la dureté

	Dureté massif (HVN _{25g.f.})			
Massif		Dépôt	Dureté moyenne (HVN _{25g.f.})	Ecart-type (HVN _{25g.f.})
TiN	2500	Ti-TiN Sans anneau	1003	326
	TIN 2500		1300	312

- Augmentation de la dureté avec anneau
 - Augmentation du taux de nitrures
- Teneur en nitrures dans les dépôts < 100%</p>

Comment améliorer la nitruration des revêtements?

Influence du mode d'injection de N₂

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Post Traitement (PT) de nitruration

	Set 1	Set 2	Set 3	Set 4	Set 5
Revêtement de base fabriqué	Ti nitruré	Ti	Ti nitruré	Ti	Ti
Gaz réactif N ₂ (L.min ⁻¹)	4			4 + 4	
Position d'injection	Torche				Torche + substrat
Distance de projection (mm)	700				
Cinématique de projection	Dépôt <mark>suiv</mark> traiter	/i du post ment	Alternance traite	dépôt / post ement	Dépôt <mark>suivi</mark> du post traitement
Cycles de dépôt	400		8	*50	400
Cycles de post traitement	Cycles de post 100 traitement		8	*6	100

Influence du Post Traitement (PT) de nitruration

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Innover sur les procédés pour la projection de nouveaux matériaux La projection à froid (Cold spray) de magnésium

Introduction à la projection à froid

Critère nécessaire sur la vitesse de projection pour l'obtention d'un revêtement

Mécanismes d'adhérence

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Liaison mécanique (Verrouillage mécanique prépondérant)

Projection à froid et Magnésium Contexte d'étude

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Difficulté Récencie die laborénties idens dépôts 2Mg par projection à froid

Structure has a gendes material mation his fruction

- Bipt de la bailaire et al di philitaire
- Inflammabilitée électromaginelation???

Objectifs : Elaborerspaticle pôt Mg à faible porosité et à microstructure uniforme

Automobile

Projection à froid et Magnésium Contexte d'étude

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Difficultés liées à l'élaboration des dépôts Mg par projection à froid

- Structure hexagonale déformation???
- Point de fusion faible oxydation???
- Inflammabilité manipulation???

Objectifs : Elaborer un dépôt Mg à faible porosité et à microstructure uniforme

Dispositifs expérimentaux

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

mesure de vitesse des particules

Elaboration des dépôts Mg

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Morphologie : irrégulière

Distribution granulométrique

Paramètres de projection				
Buse	Section circulaire			
Température du gaz principal air (°C)	300, 350, 400, 450, 450, 500, 630			
Pression du gaz (MPa)	2.5			
Substrat	Inox (304) et Al			

Estimation de la vitesse critique de particule Mg

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Vitesse critique comprise entre 653 et 677 m-s⁻¹

Effet de la température du gaz sur la microstructure des dépôts

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Porosité des dépôts diminue avec la température du gaz Degré de déformation des particules augmente avec la température du gaz

Dureté et adhérence du dépôt Mg

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Dureté

Faible

ERMPS

L'évolution de la dureté est en adéquation avec celle de la porosité Adhérence (500°C, 2.5 MPa) 4.0 sur inox 3.5 sur Al Adherence (MPa) 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Effet de température du gaz sur le rendement de dépôt

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Rendement augmente avec l'augmentation de la température du gaz

Rendement faible

Conclusion

Possibilité d'utilisation du procédé projection à froid pour

élaborer des dépôts de Mg.

Meilleur résultat sur Alliage de Mg : AZ91D

Rendre les procédés plus robustes Le développement de l'intelligence artificielle dans le cadre de la projection thermique

introduction

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

1. Z. Duan, J. Heberlein, Arc instabilities in a plasma spray torch, Journal of Thermal Spray Technology, 11(1), p 44 - 51

Réseau de Neurones et Logique floue

Développer un système automatique permettant de stabiliser le procédé.

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

automatique: 1) sans intervention humaine

2) temps d'action compatible avec la durée de fluctuation

> stabiliser: 1) nouvelle conception de torche pour $\Delta U \rightarrow 0$ J.F. Coudert (IRCER- Limoges)

2) contrôler le procédé via $T_{pr} V_p$

un point de vue pratique

un point de vue pratique

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

>paramètres extrinsèques (I, H₂, Ar)

ÞI	350~750A
≻H₂	0~15 NL/min
≻Ar	34~52 NL/min

>paramètres des particules en vol (T_p, V_p)

	≻T _p	2000~3000 °C
$AI_2O_3 - 13wt. \% TIO_2$	≻V _p	150∼400 m·s⁻¹

RNA 1: particule en vol

LERMPS

RNA 2: paramètres opératoires

principe de logique floue

surface de règles floues

interface du système automatique

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Path of FLC 2 Path of FLC1 sensor paramètre STOP H:\Taikai LIU\these\ H:\Taikai LIU\these\ Current intensity (A) 3 500 Flow rate of hydrogen (NL/min) Système Automatique FLC 2 1 10 surveillance des Flow rate of Argon (NL/min) paramètres opératoires 40 output modification modification new parameters surveillance des sensor particle current (LA) -200 200 0 Particle Temperature (°C) particules en vol 600 400 2250 500 (2200-2460°C) hydrogen 0 input 800 - 0 200 FLC 1 (NLPM) 1000 0 Particle velocity (m/s) () 300 (248-360m/s) argon current intensity (A) currant intensity (A) (NLPM) 0 8 ¹⁰ 12 input output 7,5 14 Coating Porosity (%) 10 temp. (°C) velocity (m/s) 16-0 RNA 1 (2) 0,01 0 prediction n current (I, A) flow rate of H2 (SLPM) hydrogen (NL/min) 0 RNA 2 hydrogen. Path of ANN 1 (NLPM) 40 60 & H:\Taikai LIU\ 0 80 - 0 fichier de RNA .20 Path of ANN 2 argon 100 (NLPM) H:\Taikai LIU\ 0 flow rate of Ar (SLPM) argon (NL/min)

fichier de FLC

exemple d'interface de système expert sous labview

conclusion

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

applications industrielles nombreuses et très diversifiées

association matériau / procédés / traitements de finition

augmentation de la durée de vie et nouvel outil de conception

"Le bon matériau au bon endroit"

Développeurs en projection thermique

16^{ème} Journée du réseau plasmas froids du 3 au 6 octobre 2022

UNIVERSITÉ DE TECHNOLOGIE DE BELFORT-MONTBÉLIARD

Merci

