

Axe 3 : Plasmas basse-pression Intervention 2 : Dépôts organiques/polymères Focus sur les dépôts organosiliciés pour applications membranes/capteurs

Stéphanie Roualdes, Vincent Rouessac

Institut Européen des Membranes (IEM, UMR5635)

Université de Montpellier, CNRS, ENSCM, Montpellier, France stephanie.roualdes@umontpellier.fr

Plasma et matériaux (traitements de surface vs dépôt)

Formation of nanoparticles by monomers and reactive gases and attachement on the surface

[K. D. Weltmann et al., Plasma Process Polym., 16:e1800118 (2019)]

3

coating Deposition of a surface layer

by plasma polymerization of a

precursor monomer

Les traitements de surface par plasma

Les traitements de surface par plasma

- Effets sur les supports polymères -

Gravure	\Rightarrow Nettoyage, accentuation de la rugosité				
	Préparation de surface avant dépôt				
Fonctionnalisation	\Rightarrow Modification du caractère hydrophile/hydrophobe				
	 Préparation de surface avant dépôt Biocompatibilité Optimisation des propriétés de sorption/perméation (textile, emballage, membranes permsélectives, capteurs) 				
Réticulation	\Rightarrow Augmentation des stabilités chimique, thermique et mécanique				
	Toutes applications				
	\Rightarrow Diminution de la capacité diffusionnelle				
	Optimisation des propriétés barrières (emballage)				

Le dépôt de couches minces par PECVD

La polymérisation plasma

- Un cas particulier de la PECVD. Mise en jeu de précurseurs organiques -

Variation des paramètres du procédé PECVD \Rightarrow Taux de fragmentation du **précurseur organique**

RPF-Ecole, 3-6 octobre 2022, Bonascre

Paramètres majeurs en polymérisation plasma

- Geometry of the reactor
- Nature and frequency of the discharge
- Temperature of the substrate
- Nature (molar mass M) of the precursor(s)
- Flow rates of precursors (F) / Pressure
- Power of the electric discharge (W)

- \Rightarrow Diffusional transport of species
- \Rightarrow Density of species, ionic bombardment
- \Rightarrow Diffusion of species on the substrate surface
- \Rightarrow Nature / composition of the plasma phase
- \Rightarrow Residence time, mean energy and free mean path of species
- \Rightarrow lonization and dissociation degrees

Polymérisation plasma vs polymérisation conventionnelle

[H. Yasuda et al, J. Polym. Sci. A : Polym. Chem. Ed., 23, 87 (1985)]

[H. Yasuda, Plasma Polymerization, Academic Press, Orlando, 1985] [N. Inagaki, Plasma Surface Modification and Plasma Polymerization, Technomic, Lancaster, Basel 1996]

[Auto-assemblage et polymérisation 2D de molécules organiques en surface, Rémy Pawlak, Thèse de l'Université d'Aix-Marseille 3, 2009]

Imperfections morphologiques/structurales des polymères plasma

Par comparaison aux polymères conventionnels, les polymères plasma sont :

Plus réticulés

- \Rightarrow mieux adaptés à la miniaturisation
- \Rightarrow d'une meilleure aptitude au transport d'espèces

```
Effets compensatoires
```

- \Rightarrow moins perméables / plus sélectifs aux gaz et liquides
- \Rightarrow plus stables chimiquement et thermiquement

Plus adhérents sur tous types de substrats

 \Rightarrow mieux adaptés à l'intégration dans un assemblage multi-couches

 Plus modulables en terme de nature (organiques – hybrides – inorganiques) mais moins en terme de structure (spécifiquement denses et amorphes)

• Moins ordonnés \Rightarrow moins aptes à une structuration contrôlée

Intérêt des décharges pulsées

Généralités

Les polymères plasma sont partout !

Familles de polymères plasma vs propriétés/applications

	Hydro phobie	Hydro philie	Bio-com patibilité	Textile/ plastiques	Bio Anti colmatage	Bio Anti microbes (PP + NP)	Bio Adhésion protéines	Bio Délivrance médicam.	Optique/ verres	Membra -nes/ capteurs de gaz
Fluoro carbonés										
Hydro carbonés									•••	
Organo siliciés					••					:
Ether oxydes										
Allyl amines										
Acide acrylique										

Nature des précurseurs/monomères

Monomer	Chemical formula	Application	Ref
He xamethyldisilox ane - Forte tension de vapeur (20 mbar @ 20°C) - Grande accessibilité, absence de toxicité - Faible coût	$[(CH_3)_3Si]_2O$ $H_3C \xrightarrow{CH_3} H_3C CH_3$	Platelet adhesion studies Ex vivo baboon shunt Ex vivo dog shunt In vivo mouse model	[38] [39] [40]
Hexamethyldisilazane	[(CH ₃) ₃ Si] ₂ NH	Neurological electrode	(41)
Hexamethylcyclotrisiloxane		Ex vivo dog shunt Platelet adhesion studies	[42] [43]
Methyltrimethoxylsilane	CH3-Si(OCH3)3	Platelet adhesion studies	[43]
Phenyltrimethoxysilane	C ₆ H ₅ -Si(OCH ₃) ₃	Platelet adhesion studies	[43]
N-Trimethylsilylimidazole	CH ₃ -Si-CH ₃	Platelet adhesion studies	[43]
Tetramethylhydrocyclotetrasiloxane		In vivo sheep model	[44]
Tetramethylorthosilicate	Si(OCH ₃) ₄	Platelet adhesion studies	[43]
Tetraethylorthosilicate	CH-Si(OC2H4)3	Platelet adhesion studies	[43]

Mécanisme de polymérisation plasma du HMDSO

Structure chimique et propriétés des a-SiOxCy:H

[A. S. M. de Freitas et al., Vacuum, 194, 110556 (2021)]

RPF-Ecole, 3-6 octobre 2022, Bonascre

[D. Hegemann et al., Nuclear Inst. Meth. Phys. Res. Sec. B: Beam Interact. Mater. Atoms 208, 281 (2003)] 17

Membranes pour la séparation de gaz (H_2 , O_2 , CO_2 , CH_4) (purification de H_2 , traitement de l'air)

Couches sélectives pour capteurs de COV (BTEX)

Couches sélectives pour capteurs de COV (BTEX)

Détection de BTEX : Défi en termes de sélectivité (co-polluants) et de sensibilité (traces [1 ppb - 10 ppm])

Techniques analytiques conventionnelles externes

- Infrarouge à transformée de Fourier (IRTF)
- Chromatographie en phase gazeuse (CPG) couplée
 - à la spectrométrie de masse (SM)
 - à la détection par photoionisation (PID)...
 - Précision, sélectivité ✓
 - Délais dans la chaine d'analyse, prélèvements ×

Techniques de détection en direct

- CPG ou IRTF portables
 - Précision, sélectivité ✓
 - Encombrant, cher, délai > 1 minute ×
- Capteurs chimiques : Quartz Crystal Microbalance (QCM) et InterDigitated Electrodes (IDE)
 - O Mesure instantanée, sensibilité, miniaturisation, faible coût √
 - \circ Sélectivité X
 - → Dépôt d'une couche active (adsorbant)

Couches sélectives pour capteurs de COV (BTEX)

Autre défi majeur : Sélection de l'adsorbant

<u>Critères liés aux propriétés d'adsorption</u> <u>des BTEX à l'état de traces</u>

- Affinité optimale ⇒ sensibilité et réversibilité élevées
- Sélectivité vis-à-vis des co-contaminants (eau, alcools...)
 ⇒ Couche active hydrophobe

<u>Critères liés aux propriétés</u> physicochimiques du matériau

- Stabilités thermique et chimique (humidité)
- Caractère filmogène (mise en forme)
- Mode de synthèse vert et économique

Adsorbants de BTEX : Charbons actifs, zéolites, Metal-Organic Frameworks, Oxydes métalliques... → cahier des charges partiellement validé

- Sensibilité élevée
- Faible hydrophobie : Faible performance en présence d'humidité
- Surface spécifique élevée
- Stabilité chimique et thermique
- Sorption irréversible : Désorption nécessite une température élevée

Couches sélectives pour capteurs de COV (BTEX)

CIRIMAT

Toulouse

G. Dakroub (PhD, UM, 2021)

- 3. Antennes Micro Ondes
- 4. Jauge de pression

- 6. Pompe secondaire
- 7. Pompe primaire

Paramètres de dépôt :

- Fréquence MO (ω) = 2,45 GHz
 - P_{limit}≈ 10⁻⁶ mbar
- $P_{\text{travail}} = 6,7 15,5 \text{ x} 10^{-3} \text{ mbar}$
- Température ambiante

- Puissance (W) : de 20 W jusqu'à 140 W
- Flux HMDSO (F): 1 8 sccm (sans autre gaz)

Couches sélectives pour capteurs de COV (BTEX)

Large gamme c	le matéria	<u>iux :</u>					
Condition doucesCondition(optimum énergétique)						litions dures	
	W/F 2.5	W/F 5	W/F 10	W/F 20	W/F 40	W/F 70	W/F 140
W	20	20	20	20	40	70	140
F	8	4	2	1	1	1	1
W/F	2,5	5	10	20	40	70	140
Épaisseur (nm) ±3	308	337	351	242	395	314	257
Taux de croissance (nm/min)	154	109	58	30	33	31	29

Conditions de dépôt PECVD

Pour les besoins de l'analyse RMN du solide quantitative (²⁹Si) :

- Dépôt sur lames de verre
- Décollement du film à la spatule

pprox 400 mg de poudre

RPF-Ecole, 3-6 octobre 2022, Bonascre

6 cm

Couches sélectives pour capteurs de COV (BTEX)

Perte du caractère PDMS et formation d'un matériau organosilicié hybride en durcissant les conditions plasma

Couches sélectives pour capteurs de COV (BTEX)

Couches sélectives pour capteurs de COV (BTEX)

Analyse RMN du solide (²⁹Si)

Les résultats de la ²⁹Si RMN sont en accord avec les résultats de la FTIR Ils montrent la diminution du caractère PDMS en augmentant W/F

Couches sélectives pour capteurs de COV (BTEX)

Modèle DFT pour la simulation de l'analyse XPS (Si 2p)

Calcul ΔBE DFT : Modèle : 5 molécules contenant les environnements présents à la surface des PP-HMDSO (S, M, D, T et Q)

RPF-Ecole, 3-6 octobre 2022, Bonascre

Couches sélectives pour capteurs de COV (BTEX)

Analyse XPS (Si 2p)

O. Hare et al. , Surf. Interface Anal., 36 (2004) 1427

Couches sélectives pour capteurs de COV (BTEX)

Analyse XPS (Si 2p)

W/F		FWHM		
(W/sccm)	Si 2p	C 1s	O 1s	
2,5	2,18	1,52	1,51	
5	2,20	1,56	1,52	Aug
10	2,29	1,70	1,61	gme
20	2,31	1,80	1,60	nta
40	2,31	1,83	1,68	tior
70	2,35	1,90	1,64	↓ ⁻
140	2,43	1,97	1,65	

 La surface des PP-HMDSO est proche du PDMS pour des conditions plasma douces

 La formation de nouvelles liaisons à la surface (Si-O-C, Si-CH₂-Si et Si-OH) indique un matériau organosilicié hybride pour des conditions plasma plus dures

Couches sélectives pour capteurs de COV (BTEX)

Angle de goutte, densité, indice de réfraction

Avec le durcissement des conditions plasma :

- Le caractère inorganique augmente (notamment en surface)
 - \Rightarrow l'hydrophobie diminue
- La formation des liaisons Si-CH₂-Si et Si-O-C réduit la taille des volumes libres ⇒ la densité augmente
- La formation des liaisons Si-CH₂-Si et Si-O-C augmente la polarisation électronique
 - \Rightarrow l'indice de réfraction augmente

Couches sélectives pour capteurs de COV (BTEX)

Ellipsométrie couplée à la sorption

^{P/P0} RPF-Ecole, 3-6 octobre 2022, Bonascre

Couches sélectives pour capteurs de COV (BTEX)

Couches sélectives pour capteurs de COV (BTEX)

Microbalance à quartz

- Meilleur film en termes de sensibilité pour tous les BTEX, plus spécifiquement pour le toluène et le benzène (probablement de manière corrélée avec la taille des molécules)
- Meilleur film en termes de sensibilité pour tous les BTEX par rapport à l'éthanol

G. Dakroub et al., Surfaces and Interfaces, 2021, 25, 101256

Couches sélectives pour capteurs de COV (BTEX)

Couches sélectives pour capteurs de COV (BTEX)

Effet d'un recuit à 300°C sous azote (conditions plasma douces)

35

Couches sélectives pour capteurs de COV (BTEX)

Effet d'un recuit à 300°C sous azote (conditions plasma douces)

G. Dakroub et al., submitted to Surfaces and Interfaces, 2022

Couches sélectives pour capteurs de COV (BTEX)

Perspectives en collaboration avec l'ICGM

Couches sélectives pour capteurs de COV (BTEX)

Perspectives en collaboration avec l'ICGM

Rationalisation → Relations entre les conditions de synthèse, les caractéristiques texturales, structurales, de composition chimique des films et leurs propriétés de sorption et détection sélectives de l'ethylbenzène, toluène et xylène.